求极限时使用等价无穷小的条件:1、被代换的量,在去极限的时候极限值为0.2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以.无穷小就是以数零为极限的变量.然而常量是变量的特殊一类,就像直线属于曲线的一种.确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,函数值f(x)与零无限接近,即f(x)=0,则称f(x)为当x→x0时的无穷小量?
- 文化问答
- 答案列表
等价无穷小条件:等价无穷小替换的误区[朗读]
等价无穷小的条件是符合该式子极限为0且,用在乘除法中,不能用在加减法中,至于你说的极限为0是洛必达法则的要求。
u是自变量x、y、z的函数;设f的偏导数为f1'、f2';∂u/∂x=f1'*[∂(x/y)/∂x]+f2'*[∂(y/z)/∂x]=f1'/y+f2'*0=f1'/y;∂u/∂y=f1'*[∂(x/y)/∂y]+f2'*[∂(y/z)/∂y]=-(x/y²)f1'+(f2'/z);∂u/∂z=f1'*[∂(x/y)/∂z]+f2'*[∂(y/z)/∂z]=f1'*0-(y/z²)f2'=-(y/z²)f2';
等价无穷小是从函数的泰勒展开来的,建议先理解泰勒展开再使用等价无穷小加减法替换.比如x-sinx等价1/6x^3。
当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~1/2x^2a^x-1~xlnae^x-1~xln(1+x)~x(1+bx)^a-1~abx[(1+x)^1/n]-1~1/nxloga(1+x)~x/lna值得注意的是,等价无穷小一般只能在乘除中替换,在加减中替换有时会出错(也不是不能替换,但是有条件)。