正交时积分为零在波函数的运算时可以产生很多零方便正交系必然存在因为薛定谔方程是线性的你假设解非正交仍然可以通过线性组合构造出一组新的正交解完备是必然的因为如果一个函数无法用这组解表示拿着个函数就不是薛定谔方程的解所以归根结底就是因为薛定谔方程是线性的线性方程的解必能找到正交完备系引用二楼的例子给你三个不在同一平面上的矢量你必然可以把syz方向的单位矢量构造出来而这三个矢量可以表征三维空间里的任意一个矢量。
@xiaoba18
顶0
加入收藏
相关问答推荐
加入收藏